ОТЗЫВ

официального оппонента д.ф-м.н., профессора
Федорова Виктора Александровича
на диссертационную работу «Полимерные композиты, наполненные
модифицированным оксидом и карбидом вольфрама, для радиационной
защиты линейных ускорителей электронов с энергией до 10 Мэв»,
представленную к защите на соискание ученой степени
кандидата технических наук по специальности
1.3.8. Физика конденсированного состояния
Кашибадзе Виталием Валерьевичем

Актуальность темы диссертации

Разработка эффективных полимерных композитов для радиационной защиты линейных ускорителей электронов (ЛУЭ), в настоящее время востребована, поскольку невозможность защитить персонал, работающий с ЛУЭ, от негативного воздействия ионизирующих излучений в условиях ограниченного пространства создает основное препятствия для развития и модернизации ЛУЭ, а также значительно увеличивает стоимость и трудозатраты для их эксплуатации. Современные полимерные материалы невозможно использовать для радиационной защиты ЛУЭ из-за множества недостатков, таких как, низкие теплофизические свойства и низкие радиационно-защитные характеристики. В связи с этим, работа Кашибадзе В.В. посвященная разработке полимерных композиционных материалов на основе фторопластовой матрицы, наполненной модифицированным оксидом и карбидом вольфрама, для защиты от ионизирующих излучений линейного ускорителя электронов с энергией до 10 Мэв безусловно актуальна.

Работа Кашибадзе В.В, выполнена в рамках государственного задания Минобрнауки РФ, проект № FZWN-2023-0004 с использованием оборудования Центра высоких технологий БГТУ им. В.Г. Шухова.

Общая характеристика работы

Диссертация, изложенная на 169 страницах машинописного текста, включающих 28 рисунков, 38 таблиц, список литературы из 201 наименования и 3 приложения.

Во введении соискателем обоснована актуальность проблемы на которое направлено исследование, отражена степень разработанности темы исследования, сформулированы цель и задачи работы. Подробно раскрыта научная новизна, теоретическая и практическая значимость работы, а также сформулированы основные положения, выносимые на защиту. Приведены сведения о методологии и методах исследования, об апробации работы, внедрении и достоверности результатов, основных публикациях, личном вкладе автора.

Первая глава посвящена теоретическому изучению ЛУЭ, их применению и негативным факторам, возникающим в процессе эксплуатации. Представлена информация по нормативным требованиям к радиационной защите ЛУЭ и её расчёту. Произведен подробный литературный анализ современных радиационно-защитных материалов, определены их положительные и отрицательные стороны, на основе чего сделан вывод, что наиболее подходящими для решения поставленных задач являются полимерные композиты. Изучен опыт отечественных и зарубежных авторов, описывающих радиационную стойкость композитов с полимерной матрицей.

Вторая глава посвящена описанию используемых в работе сырьевых материалов, их основных характеристик, приведена схема радиационных испытаний и описаны физико-химические методы исследований.

В третьей главе описана поэтапная технология синтеза полимерного композита для радиационной защиты ЛУЭ на основе фторопласта с вольфрам содержащими наполнителями. Исследована возможность модифицирования оксида и карбида вольфрама кремнийорганической смолой К-9 для создания гидрофобной оболочки на их поверхности. Данное модифицирование позволяет улучшить равномерность распределения наполнителя в объёме материала. Успешность эксперимента доказана увеличением краевого угла смачивания наполнителей и СЭМ-изображениями композита, на которых видно изменение характера распределения частиц карбида и оксида вольфрама в композите. Представлена методика по увеличению сопротивления негативным воздействиям внешних факторов и предотвращению механических деформаций, заключающаяся в нанесении износостойкого покрытия WC-Ni детонационным напылением. При этом увеличивается микротвёрдость по Виккерсу до значений, присущих высоко конструкционным сплавам. Установлено, что при введении коллоидного графита в полимерный композит на основе фторопласта можно увеличить показатель теплопроводности и теплоёмкости.

В четвёртой главе изучается воздействие ускоренных электронов на полимерные композиционные материалы. Выполнено моделирование методом Монте Карло в программе CASINO при изучения взаимодействия электронного пучка с полимерными композитами основываясь на плотности и атомарном составе. Показано, что наиболее эффективным наполнителем является WC, поскольку значительно сокращает эффективный пробег электронов. Отмечено, что исследуемые полимерные композиты превосходят современные аналоги по уменьшению среднего пробега электронов. Изучены изменения в структуре и свойствах полимерных композитов после облучения с помощью ИК-Фурье спектров, которые показали деградацию фторопласта. Это подтверждается снижением прочности всех исследуемых материалов после облучения электронами и изменением теплофизических характеристик.

В пятой главе методом физико-математического моделирования обнаружено, что наибольший вклад в суммарный коэффициент ослабления для

Комптона. исследуемых материалов вносит эффект Представлены радиационно-защитные характеристики, полученные экспериментальным методом, которые превосходят аналогичные для фторопласта, благодаря использованию вольфрам содержащих наполнителей с высоким процентным содержанием от 30 до Проведен сравнительный анализ между представленными полимерными композитами современными И аналогами ПО коэффициенту ослабления, который показал превосходство изучаемых материалов по данной характеристике. Исследованы изменения структуры полимерных композитов и теплофизических характеристиках после облучения гамма-квантами. Зафиксировано снижение прочности на изгиб, увеличение теплопроводности и снижение теплоёмкости. Установлена возможность радиационно-термической модификации полимерных композитов в гамма-пучке, которая происходит за счёт образующихся парамагнитных пероксидных макрорадикалов в полимере и кремниевых радикалов в кремнийорганическом покрытии, позволяя увеличить радиационную стойкость полимерных композитов на основе фторопласта. Рассчитана необходимая толщина радиационной защиты ЛУЭ с энергией 10 МэВ полимерного композита, наполненного модифицированным обеспечения нормативных показателей, указанных в СанПиН 2.6.1.2573-10. Также, для данного состава системные физические параметры оформлены в виде таблиц международного стандарта, по которым обеспечиваются расчеты при выполнении инженерных задач радиационной защиты.

Диссертационная работа завершается заключением, списком литературы и приложениями.

Обоснованность и достоверность основных положений, выводов и рекомендаций

Основные научные положения, выводы и рекомендации в работе достаточно обоснованы. Подробный анализ современных работ по теме исследования позволил автору сформулировать направления основные исследований, результатами которых подтверждена эффективность радиационной защиты полимерным композитом. Цели И задачи диссертационной работы сформулированы грамотно. Выводы по главам и заключению научно обоснованы, убедительны отражают суть выполненных работ. Автором проведен существенный объем экспериментальных и теоретических исследований, а также определены перспективы дальнейшей работы.

Достоверность научных положений в работе Кашибадзе В.В. обеспечена использованием современных методов исследований, реализованных на высокотехнологичном и сертифицированном оборудовании. Экспериментальные результаты подкреплены теоретическими исследованиями, анализ которых показал не противоречие общепризнанным научным фактам и результатам работ других научных коллективов.

Основные положения работы изложены в 19 научных публикациях, в том числе: 6 работ — в рецензируемых научных изданиях ВАК РФ; 3 работы — в зарубежных изданиях, индексируемых международными библиографическими базами данных Scopus и Web of Science. Получен 1 патент РФ на изобретение № 2782759 и 2 свидетельства о регистрации ноу-хау (№ 20210019, № 20210040).

Научная новизна

Новизна диссертационной работы заключается в разработке механизма модифицирования оксида и карбида вольфрама кремнийорганической смолой К-9. При механоактивации соответствующего модифицированного наполнителя с кремнийорганической оболочкой происходит их химическое взаимодействие с прочной химической фиксацией модификатора на адсорбенте наполнителя с образованием устойчивой гидрофобной оболочки, что позволяет улучшить равномерность распределения наполнителя в объёме материала.

Теоретически обосновано и экспериментально подтверждено повышение сопротивления воздействию негативных внешних факторов, предотвращение механических деформаций, обусловленное увеличением микротвёрдости по Виккерсу, после облучения гамма-квантами и нанесения износостойкого покрытия WC-Ni детонационным напылением. Доказано повышение радиационной концентрации поглощенной стойкости снижение дозы электронов поверхностном слое толщиной 110-115 мкм после нанесения защитного покрытия.

Предложен метод увеличения теплопроводности полимерных композитов, связанный с добавлением коллоидного графита. Эксперименты показали, что путём изменения концентрации коллоидного графита можно создавать композиты с определёнными тепловыми характеристиками, благодаря формированию теплопроводящих структур, уменьшающих накопление излишнего тепла и предотвращающих электрический пробой при электронном облучении.

Установлена возможность радиационно-термической модификации полимерных композитов на основе фторопласта в гамма-пучке за счёт образования парамагнитных центров радикального типа (кремниевых $Si\cdot$ и пероксидных $CFO_2\cdot$) с протеканием рекомбинационной реакции между ними по радикальному механизму, что приводит к увеличению радиационной стойкости.

Научная и практическая ценность диссертации

В результате проведенных исследований разработаны составы и технология получения фторопластовых композиционных материалов, наполненных модифицированным оксидом и карбидом вольфрама, подобраны оптимальные параметры синтеза.

Установлено, что модифицирование путем механоактивации УЗ-кавитацией вольфрам содержащих наполнителей с кремнийорганическим полиметилсилоксановым олигомером повышает краевой угол смачивания с

 $24,2\pm0,4$ ° до $127,9\pm6,2$ ° для WO_3 и с $26,5\pm2,8$ ° до $124,1\pm4,2$ ° для WC за счёт химического взаимодействия с прочной химической фиксацией модификатора на адсорбенте наполнителя с образованием устойчивой гидрофобной оболочки.

Определено, что для нанесения защитного покрытия WC-Ni методом детонационного газотермического напыления на поверхность полимерного композита оптимальными параметрами являются скорость прохода пушки 2000 мм/мин, расход порошка 1400 г/ч, расход азота для транспортировки порошка 0,9 м³/ч, частота детонации 20 Гц, тем самым увеличивая значение микротвёрдости по Виккерсу до значений сопоставимых с микротвердостью высококонструкционных сплавов.

Установлен способ повышения теплопроводности композитов путем введения коллоидного графита в количестве от 3 до 10 масс. %. Введение коллоидного графита в количестве 10 масс. % повышает теплопроводность композиционных материалов в 1,5-1,8 раза.

Представлены теоретические результаты расчеты и экспериментальные роезультаты взаимодействия ускоренных электронов, тормозного рентгеновского и гамма-излучения с исследуемыми полимерными композитами. Доказано, что введение предлагаемых наполнителей увеличивает радиационно-защитные характеристики в исследуемом диапазоне энергий. Эффективный пробег электронов с энергией 10 МэВ снизился с 2,88 см для фторопласта до 1,48 и 1,32 см для составов с 60 масс.%. наполнения WO₃ и WC, соответственно.

Использование предложенной радиационно-термической модификации фторопластовых композитов в γ -пучке увеличило прочность при изгибе образцов, наполненных (60 масс. %) модифицированными WO₃ и WC, на 15 % и 20 %, соответственно. Значения радиационной стойкости составили: 4,5±0,2 МГр (до модификации 100 ± 8 кГр), $5,5\pm0,2$ МГр (до модификации 120 ± 10 кГр) для композита, содержащего 60 масс. % модифицированного WO₃, и композита, содержащего 60 масс. % модифицированного WC, соответственно.

Для оптимального состава полимерного композита данные радиационнозащитных характеристик оформлены в виде таблиц международного стандарта, которые обеспечивают теоретические расчеты при выполнении инженерных задач радиационной защиты.

Рекомендации по использованию результатов и выводов, приведенных в диссертации

Полученные результаты могут быть **рекомендованы** для использования: в производстве — при проектировании радиационной защиты ЛУЭ с энергией 10 МэВ; в учебном процессе — при подготовке аспирантов, обучающихся по специальности 1.3.8. Физика конденсированного состояния.

Перспективы дальнейших исследований целесообразно рассматривать в направлении расширения областей применения полученных радиационно-

защитных полимерных композиционных материалов в атомной и космической отрасли.

По работе есть ряд замечаний:

- 1) Автор в качестве наполнителей фторопластовой матрицы использует соединения вольфрама в концентрации 30% и 60% утверждая, что это оптимальный состав. Каким образом определялась оптимальность именно этих концентраций?
- 2) Данные по теплопроводности и теплоемкости в таблицах 4.3, 4.4, 5.4, 5.5 представлены без стандартных отклонений, что важно для повышения научной достоверности.
- 3) На стр. 61 диссертационной работы указано, что криогенный помол проводили при температуре -180° C, а в технологической схеме получения композитов на стр. 62 указана другая температура (-60° C). Какое значение температуры правильное?
- 4) В диссертационном исследовании описано повышение твердости поверхности методом детонационного газотермического напыления, но не указано влияет ли повышение твердости на радиационную стойкость композитов.
- 5) На рис. 3.7 и 3.8 представлены СЭМ-изображения готовых композитов с исходными и модифицированными наполнителями. Следовало бы для лучшего понимания распределения наполнителей в полимере представить еще и карту энергодисперсионного анализа образцов, для подтверждения влияния модифицирования на равномерность распределения. Используемый автором микроскоп Tescan MIRA имеет возможность проведения таких исследований (определять локальный состав образцов).
- 6) Работа не лишена ошибок и опечаток. Например, на стр. 74 приведены неправильные результаты повышения микротвердости. На стр.13 «.. в электрическом поле с напряжением Е...». Нужно с напряженностью Е. На стр. 45 написано «...политетрфаторэтиленовых...». Опечатка! и др.

Представленные замечания не влияют на общую положительную оценку работы.

Заключение о соответствии диссертации критериям, установленным Положением о присуждении ученой степени

Диссертация Кашибадзе B.B.на тему: «Полимерные композиты, модифицированным наполненные оксидом карбидом И вольфрама, ДЛЯ радиационной защиты линейных ускорителей электронов с энергией до 10 МэВ» собой самостоятельно представляет выполненную, завершенную квалификационную работу, в которой отражены новые научно обоснованные технические технологические И решения, обеспечивающие высокие теплофизические, прочностные и радиационно-защитные характеристики новых полимерных композитов. Полученные новые научные результаты расширяют представления о возможностях использования радиационно-защитных полимерных композитов, что имеют существенное значение для науки и практики.

Диссертация написана грамотным научным языком, материал изложен в логически-последовательной форме, на протяжении всей работы наблюдается внутреннее единство.

Содержание автореферата соответствует содержанию диссертации.

На основании вышеизложенного считаю, что представленная диссертационная работа полностью соответствует требованиям п.п. 9-14 «Положения о присуждении ученых степеней», утвержденного постановлением Правительства РФ № 842 от 24.09.2013 г. (в редакции от 11.09.2021 г.), а ее автор Кашибадзе Виталий Валерьевич, заслуживает присуждения ученой степени кандидата технических наук по специальности 1.3.8. Физика конденсированного состояния.

Официальный оппонент:

Заслуженный деятель науки РФ, доктор физико-математических наук, профессор, профессор кафедры теоретической и экспериментальной физики Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования «Тамбовский государственный университет имени Г.Р. Державина. Научная специальность 01.04.07 — Физика твердого тела. На обработку персональных данных согласен.

Вельне Федоров Виктор Александрович

392000, г. Тамбов,

ул. Интернациональная, 33,

ФГБОУ ВО «Тамбовский государственный

университет имени Г.Р. Державина

Тел.: 8(4752)72-34-34 доб.20-18

Email: fedorov-tsu.tmb@inbox.ru

« 20 » февраля 2025 г.

ФГБОУ ВО «Тамбовский государственный университет имени Г.Р. Державина»

ЗАВЕРЯ

Директор Многофункционального центо
управления кадрового сопровождения

Nonagnyum 320 200 » grepan 220

ALOBOX EHMA